Continuous Ethanol Production from Synthesis Gas by Clostridium ragsdalei in a Trickle-Bed Reactor

نویسندگان

  • Mamatha Devarapalli
  • Randy S. Lewis
  • Hasan K. Atiyeh
چکیده

A trickle-bed reactor (TBR) when operated in a trickle flow regime reduces liquid resistance to mass transfer because a very thin liquid film is in contact with the gas phase and results in improved gas–liquid mass transfer compared to continuous stirred tank reactors (CSTRs). In the present study, continuous syngas fermentation was performed in a 1-L TBR for ethanol production by Clostridium ragsdalei. The effects of dilution and gas flow rates on product formation, productivity, gas uptakes and conversion efficiencies were examined. Results showed that CO and H2 conversion efficiencies reached over 90% when the gas flow rate was maintained between 1.5 and 2.8 standard cubic centimeters per minute (sccm) at a dilution rate of 0.009 h−1. A 4:1 molar ratio of ethanol to acetic acid was achieved in co-current continuous mode with both gas and liquid entered the TBR at the top and exited from the bottom at dilution rates of 0.009 and 0.012 h−1, and gas flow rates from 10.1 to 12.2 sccm and 15.9 to 18.9 sccm, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liquid Fuel Production from Synthesis Gas via Fermentation Process in a Continuous Tank Bioreactor (CSTBR) Using Clostridium ljungdahlii

The potential bioconversion of synthesis gas (syngas) to fuels and chemicals by microbial cell has attracted considerable attention in past decade. The feasibility of enhancing syngas bioconversion to ethanol and acetate using Clostridium ljungdahlii in a continuous tank bioreactor (CSTBR), kinetics and mass transfer coefficient of carbon monoxide (CO) utilization were evaluated. Two different ...

متن کامل

Improved numerical simulation of the low temperature Fischer-Tropsch synthesis in a trickle bed reactor

Abstract Gas to liquid (GTL) process involves heterogeneous catalytic chemical reactions that convert synthesis gas to hydrocarbons and water vapor. A three phase reactor, called Low temperature Fischer-Tropsch (LTFT) is commonly applied for GTL process. In this reactor the gaseous phase includes the synthesis gas, light hydrocarbons and water vapor, the liquid phase is a mixture of the h...

متن کامل

Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor.

A mesophilic unsaturated flow (trickle bed) reactor was designed and tested for H2 production via fermentation of glucose. The reactor consisted of a column packed with glass beads and inoculated with a pure culture (Clostridium acetobutylicum ATCC 824). A defined medium containing glucose was fed at a flow rate of 1.6 mL/min (0.096 L/h) into the capped reactor, producing a hydraulic retention ...

متن کامل

I Methanol Synthesis in a Trickle Bed Reactor

INTRODUCTION The conversion of synthesis gas to methanol is practiced commercially in gas phase fixed bed reactors over a Cu/Zn/Al,O1 catalyst. However, because of the highly exothermic nature of the synthesis reactions, heat dissipation has been a bottleneck in the reactor design and process configuration. Moreover, coalderived synthesis gas, having a low H,/CO ratio, is not suitable for use i...

متن کامل

CFD Simulation of Porosity and Particle Diameter Influence on Wall-to-Bed Heat Transfer in Trickle Bed Reactors

Wall-to-bed (or wall-to-fluid) heat transfer issues in trickle bed reactors (TBR) has an important impact on operation and efficiency in this category of reactors. In this study, the hydrodynamic and thermal behavior of trickle bed reactors was simulated by means of computational fluid dynamics (CFD) technique. The multiphase behavior of trickle bed reactor was studied by the implementation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017